Me conecto a la API https://covid19api.com/
!pip install pandas
Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: pandas in c:\programdata\anaconda3\lib\site-packages (1.4.2) Requirement already satisfied: numpy>=1.18.5 in c:\programdata\anaconda3\lib\site-packages (from pandas) (1.21.5) Requirement already satisfied: pytz>=2020.1 in c:\programdata\anaconda3\lib\site-packages (from pandas) (2021.3) Requirement already satisfied: python-dateutil>=2.8.1 in c:\programdata\anaconda3\lib\site-packages (from pandas) (2.8.2) Requirement already satisfied: six>=1.5 in c:\programdata\anaconda3\lib\site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)
pip install numpy
Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-packages (1.21.5) Note: you may need to restart the kernel to use updated packages.
import pandas as pd
Después de importar, hay que llamar la lista de países con Covid19, esto se realiza con el objeto 'url' y se verifica la función
url ='https://api.covid19api.com/countries'
url
'https://api.covid19api.com/countries'
Un data frame es una estructura de datos que sirve para guarar distintos tipos de datos,es similar a una hoja de cálculo. Para que se reflejen los datos de la ciudades con Covid19 hay que crear el data frame, se usa df = pd.read_json(url) para que funcione, esto funciona cuando lo llamamos a través de pandas.
df = pd.read_json(url)
df
Country | Slug | ISO2 | |
---|---|---|---|
0 | Gibraltar | gibraltar | GI |
1 | Oman | oman | OM |
2 | France | france | FR |
3 | Jersey | jersey | JE |
4 | Mali | mali | ML |
... | ... | ... | ... |
243 | Puerto Rico | puerto-rico | PR |
244 | Papua New Guinea | papua-new-guinea | PG |
245 | Saint Pierre and Miquelon | saint-pierre-and-miquelon | PM |
246 | Timor-Leste | timor-leste | TL |
247 | Montenegro | montenegro | ME |
248 rows × 3 columns
Para visualizar los datos Covid19 en España desde el primer día de contagio, hay que crear una lista usando df[df['Country'] == 'Spain'] esto sirve para df llame a países [Country] y de ahí saque los datos de España, también nos ayuda a ver el Slug y el ISO.
df[df['Country'] == 'Spain']
Country | Slug | ISO2 | |
---|---|---|---|
141 | Spain | spain | ES |
url_rt_es = 'https://api.covid19api.com/country/spain/status/confirmed/live'
df_rt_es = pd.read_json(url_rt_es)
df_rt_es
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
892 | Spain | ES | 40.46 | -3.75 | 12818184 | confirmed | 2022-07-02 00:00:00+00:00 | |||
893 | Spain | ES | 40.46 | -3.75 | 12818184 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Spain | ES | 40.46 | -3.75 | 12818184 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Spain | ES | 40.46 | -3.75 | 12890002 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Spain | ES | 40.46 | -3.75 | 12890002 | confirmed | 2022-07-06 00:00:00+00:00 |
897 rows × 10 columns
Para mostrar la cabecera del resultado utilizamos:
df_rt_es.head()
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Spain | ES | 40.46 | -3.75 | 0 | confirmed | 2020-01-26 00:00:00+00:00 |
Para mostrar la cola de los resultados utlizamos:
df_rt_es.tail()
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
892 | Spain | ES | 40.46 | -3.75 | 12818184 | confirmed | 2022-07-02 00:00:00+00:00 | |||
893 | Spain | ES | 40.46 | -3.75 | 12818184 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Spain | ES | 40.46 | -3.75 | 12818184 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Spain | ES | 40.46 | -3.75 | 12890002 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Spain | ES | 40.46 | -3.75 | 12890002 | confirmed | 2022-07-06 00:00:00+00:00 |
Ya se puede observa el comportamiento del Covid19 en España, y plotaremos los resultados con casos_es_plot()
casos_es = df_rt_es.set_index('Date')['Cases']
casos_es.plot(title="Casos de Covid-19 en España")
<AxesSubplot:title={'center':'Casos de Covid-19 en España'}, xlabel='Date'>
Con el caso de Panamá recreamos los mismo pasos que hicimos con España
Verificamos el Slug y el ISO para obtener los resultados.
df[df['Country'] == 'Panama']
Country | Slug | ISO2 | |
---|---|---|---|
190 | Panama | panama | PA |
url_casos_pa = 'https://api.covid19api.com/country/panama/status/confirmed/live'
df_rt_pa = pd.read_json(url_casos_pa)
df_rt_pa
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Panama | PA | 8.54 | -80.78 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Panama | PA | 8.54 | -80.78 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Panama | PA | 8.54 | -80.78 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Panama | PA | 8.54 | -80.78 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Panama | PA | 8.54 | -80.78 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
893 | Panama | PA | 8.54 | -80.78 | 925254 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Panama | PA | 8.54 | -80.78 | 925254 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Panama | PA | 8.54 | -80.78 | 925254 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Panama | PA | 8.54 | -80.78 | 925254 | confirmed | 2022-07-06 00:00:00+00:00 | |||
897 | Panama | PA | 8.54 | -80.78 | 925254 | confirmed | 2022-07-08 00:00:00+00:00 |
898 rows × 10 columns
Con el diagrama de flujo representamos el gráfico
casos_pa = df_rt_pa.set_index('Date')['Cases']
casos_pa.plot(title="Casos de Covid 19 en Panamá")
<AxesSubplot:title={'center':'Casos de Covid 19 en Panamá'}, xlabel='Date'>
En esta parte haremos la compartiva de los casos de Covid19 de Panamá y España, primero vamos a plotear,esto signfica que vamos a mostrar una gráfica comparativa entre los dos países.
Vamos a usar pa_vs_es([casos_es,casos_pa]axis=1)
pa_vs_es = pd.concat([casos_es,casos_pa],axis=1)
pa_vs_es
Cases | Cases | |
---|---|---|
Date | ||
2020-01-22 00:00:00+00:00 | 0.0 | 0 |
2020-01-23 00:00:00+00:00 | 0.0 | 0 |
2020-01-24 00:00:00+00:00 | 0.0 | 0 |
2020-01-25 00:00:00+00:00 | 0.0 | 0 |
2020-01-26 00:00:00+00:00 | 0.0 | 0 |
... | ... | ... |
2022-07-03 00:00:00+00:00 | 12818184.0 | 925254 |
2022-07-04 00:00:00+00:00 | 12818184.0 | 925254 |
2022-07-05 00:00:00+00:00 | 12890002.0 | 925254 |
2022-07-06 00:00:00+00:00 | 12890002.0 | 925254 |
2022-07-08 00:00:00+00:00 | NaN | 925254 |
898 rows × 2 columns
pa_vs_es.columns = ['España', 'Panamá']
pa_vs_es
España | Panamá | |
---|---|---|
Date | ||
2020-01-22 00:00:00+00:00 | 0.0 | 0 |
2020-01-23 00:00:00+00:00 | 0.0 | 0 |
2020-01-24 00:00:00+00:00 | 0.0 | 0 |
2020-01-25 00:00:00+00:00 | 0.0 | 0 |
2020-01-26 00:00:00+00:00 | 0.0 | 0 |
... | ... | ... |
2022-07-03 00:00:00+00:00 | 12818184.0 | 925254 |
2022-07-04 00:00:00+00:00 | 12818184.0 | 925254 |
2022-07-05 00:00:00+00:00 | 12890002.0 | 925254 |
2022-07-06 00:00:00+00:00 | 12890002.0 | 925254 |
2022-07-08 00:00:00+00:00 | NaN | 925254 |
898 rows × 2 columns
pa_vs_es.plot(title="Comparativa Covid19 España-Panamá")
<AxesSubplot:title={'center':'Comparativa Covid19 España-Panamá'}, xlabel='Date'>
Siempre empezamos verificando el Slug y el ISO.
df[df['Country'] == 'El Salvador']
Country | Slug | ISO2 | |
---|---|---|---|
139 | El Salvador | el-salvador | SV |
url_casos_sv = 'https://api.covid19api.com/country/el-salvador/status/confirmed/live'
df_rt_sv = pd.read_json(url_casos_sv)
df_rt_sv
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | El Salvador | SV | 13.79 | -88.9 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | El Salvador | SV | 13.79 | -88.9 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | El Salvador | SV | 13.79 | -88.9 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | El Salvador | SV | 13.79 | -88.9 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | El Salvador | SV | 13.79 | -88.9 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
894 | El Salvador | SV | 13.79 | -88.9 | 169646 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | El Salvador | SV | 13.79 | -88.9 | 169646 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | El Salvador | SV | 13.79 | -88.9 | 169646 | confirmed | 2022-07-06 00:00:00+00:00 | |||
897 | El Salvador | SV | 13.79 | -88.9 | 169646 | confirmed | 2022-07-07 00:00:00+00:00 | |||
898 | El Salvador | SV | 13.79 | -88.9 | 169646 | confirmed | 2022-07-08 00:00:00+00:00 |
899 rows × 10 columns
casos_sv = df_rt_sv.set_index('Date')['Cases']
casos_sv.plot(title="Casos de Covid-19 en El Salvador")
<AxesSubplot:title={'center':'Casos de Covid-19 en El Salvador'}, xlabel='Date'>
Primer paso verificar el Slug y el ISO
df[df['Country'] == 'Nicaragua']
Country | Slug | ISO2 | |
---|---|---|---|
36 | Nicaragua | nicaragua | NI |
url_casos_ni = 'https://api.covid19api.com/country/nicaragua/status/confirmed/live'
df_rt_ni = pd.read_json(url_casos_ni)
df_rt_ni
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Nicaragua | NI | 12.87 | -85.21 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Nicaragua | NI | 12.87 | -85.21 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Nicaragua | NI | 12.87 | -85.21 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Nicaragua | NI | 12.87 | -85.21 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Nicaragua | NI | 12.87 | -85.21 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
893 | Nicaragua | NI | 12.87 | -85.21 | 14690 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Nicaragua | NI | 12.87 | -85.21 | 14690 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Nicaragua | NI | 12.87 | -85.21 | 14690 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Nicaragua | NI | 12.87 | -85.21 | 14721 | confirmed | 2022-07-06 00:00:00+00:00 | |||
897 | Nicaragua | NI | 12.87 | -85.21 | 14721 | confirmed | 2022-07-08 00:00:00+00:00 |
898 rows × 10 columns
url_casos_ni = 'https://api.covid19api.com/country/nicaragua/status/confirmed/live'
df_rt_ni = pd.read_json(url_casos_ni)
casos_ni = df_rt_ni.set_index('Date')['Cases']
casos_ni.plot(title="Casos de Covid19 en Nicaragua")
<AxesSubplot:title={'center':'Casos de Covid19 en Nicaragua'}, xlabel='Date'>
df[df['Country'] == 'Honduras']
Country | Slug | ISO2 | |
---|---|---|---|
91 | Honduras | honduras | HN |
url_casos_hn = 'https://api.covid19api.com/country/honduras/status/confirmed/live'
df_rt_hn = pd.read_json(url_casos_hn)
df_rt_hn
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Honduras | HN | 15.2 | -86.24 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Honduras | HN | 15.2 | -86.24 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Honduras | HN | 15.2 | -86.24 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Honduras | HN | 15.2 | -86.24 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Honduras | HN | 15.2 | -86.24 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
893 | Honduras | HN | 15.2 | -86.24 | 427718 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Honduras | HN | 15.2 | -86.24 | 427718 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Honduras | HN | 15.2 | -86.24 | 427718 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Honduras | HN | 15.2 | -86.24 | 427718 | confirmed | 2022-07-06 00:00:00+00:00 | |||
897 | Honduras | HN | 15.2 | -86.24 | 427718 | confirmed | 2022-07-08 00:00:00+00:00 |
898 rows × 10 columns
url_casos_hn = 'https://api.covid19api.com/country/honduras/status/confirmed/live'
df_rt_hn = pd.read_json(url_casos_hn)
casos_hn = df_rt_hn.set_index('Date')['Cases']
casos_hn.plot(title="Casos de Covid19 en Honduras")
<AxesSubplot:title={'center':'Casos de Covid19 en Honduras'}, xlabel='Date'>
df[df['Country'] == 'Guatemala']
Country | Slug | ISO2 | |
---|---|---|---|
239 | Guatemala | guatemala | GT |
url_casos_gt = 'https://api.covid19api.com/country/guatemala/status/confirmed/live'
df_rt_gt = pd.read_json(url_casos_gt)
df_rt_gt
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Guatemala | GT | 15.78 | -90.23 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Guatemala | GT | 15.78 | -90.23 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Guatemala | GT | 15.78 | -90.23 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Guatemala | GT | 15.78 | -90.23 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Guatemala | GT | 15.78 | -90.23 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
893 | Guatemala | GT | 15.78 | -90.23 | 920294 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Guatemala | GT | 15.78 | -90.23 | 921146 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Guatemala | GT | 15.78 | -90.23 | 922340 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Guatemala | GT | 15.78 | -90.23 | 927473 | confirmed | 2022-07-06 00:00:00+00:00 | |||
897 | Guatemala | GT | 15.78 | -90.23 | 933259 | confirmed | 2022-07-08 00:00:00+00:00 |
898 rows × 10 columns
url_casos_gt = 'https://api.covid19api.com/country/guatemala/status/confirmed/live'
df_rt_gt = pd.read_json(url_casos_gt)
casos_gt = df_rt_gt.set_index('Date')['Cases']
casos_gt.plot(title="Casos de Covid19 en Guatemala")
<AxesSubplot:title={'center':'Casos de Covid19 en Guatemala'}, xlabel='Date'>
df[df['Country'] == 'Costa Rica']
Country | Slug | ISO2 | |
---|---|---|---|
242 | Costa Rica | costa-rica | CR |
url_casos_cr = 'https://api.covid19api.com/country/costa-rica/status/confirmed/live'
df_rt_cr = pd.read_json(url_casos_cr)
df_rt_cr
Country | CountryCode | Province | City | CityCode | Lat | Lon | Cases | Status | Date | |
---|---|---|---|---|---|---|---|---|---|---|
0 | Costa Rica | CR | 9.75 | -83.75 | 0 | confirmed | 2020-01-22 00:00:00+00:00 | |||
1 | Costa Rica | CR | 9.75 | -83.75 | 0 | confirmed | 2020-01-23 00:00:00+00:00 | |||
2 | Costa Rica | CR | 9.75 | -83.75 | 0 | confirmed | 2020-01-24 00:00:00+00:00 | |||
3 | Costa Rica | CR | 9.75 | -83.75 | 0 | confirmed | 2020-01-25 00:00:00+00:00 | |||
4 | Costa Rica | CR | 9.75 | -83.75 | 0 | confirmed | 2020-01-26 00:00:00+00:00 | |||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
893 | Costa Rica | CR | 9.75 | -83.75 | 904934 | confirmed | 2022-07-03 00:00:00+00:00 | |||
894 | Costa Rica | CR | 9.75 | -83.75 | 904934 | confirmed | 2022-07-04 00:00:00+00:00 | |||
895 | Costa Rica | CR | 9.75 | -83.75 | 904934 | confirmed | 2022-07-05 00:00:00+00:00 | |||
896 | Costa Rica | CR | 9.75 | -83.75 | 904934 | confirmed | 2022-07-06 00:00:00+00:00 | |||
897 | Costa Rica | CR | 9.75 | -83.75 | 904934 | confirmed | 2022-07-08 00:00:00+00:00 |
898 rows × 10 columns
url_casos_cr = 'https://api.covid19api.com/country/costa-rica/status/confirmed/live'
df_rt_cr = pd.read_json(url_casos_cr)
casos_cr = df_rt_cr.set_index('Date')['Cases']
casos_cr.plot(title="Casos de Covid19 en Costa Rica")
<AxesSubplot:title={'center':'Casos de Covid19 en Costa Rica'}, xlabel='Date'>
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn = pd.concat([casos_pa,casos_sv,casos_ni,casos_cr,casos_gt,casos_hn],axis=1)
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn
Cases | Cases | Cases | Cases | Cases | Cases | |
---|---|---|---|---|---|---|
Date | ||||||
2020-01-22 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-23 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-24 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-25 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-26 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... |
2022-07-03 00:00:00+00:00 | 925254 | 169646 | 14690 | 904934 | 920294 | 427718 |
2022-07-04 00:00:00+00:00 | 925254 | 169646 | 14690 | 904934 | 921146 | 427718 |
2022-07-05 00:00:00+00:00 | 925254 | 169646 | 14690 | 904934 | 922340 | 427718 |
2022-07-06 00:00:00+00:00 | 925254 | 169646 | 14721 | 904934 | 927473 | 427718 |
2022-07-08 00:00:00+00:00 | 925254 | 169646 | 14721 | 904934 | 933259 | 427718 |
898 rows × 6 columns
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn.columns = ['Panamá', 'El Savador', 'Nicaragua', 'Costa Rica', 'Guatemala', 'Honduras']
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn
Panamá | El Savador | Nicaragua | Costa Rica | Guatemala | Honduras | |
---|---|---|---|---|---|---|
Date | ||||||
2020-01-22 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-23 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-24 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-25 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
2020-01-26 00:00:00+00:00 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... |
2022-07-03 00:00:00+00:00 | 925254 | 169646 | 14690 | 904934 | 920294 | 427718 |
2022-07-04 00:00:00+00:00 | 925254 | 169646 | 14690 | 904934 | 921146 | 427718 |
2022-07-05 00:00:00+00:00 | 925254 | 169646 | 14690 | 904934 | 922340 | 427718 |
2022-07-06 00:00:00+00:00 | 925254 | 169646 | 14721 | 904934 | 927473 | 427718 |
2022-07-08 00:00:00+00:00 | 925254 | 169646 | 14721 | 904934 | 933259 | 427718 |
898 rows × 6 columns
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn.plot(title="Comparación del virus Covid-19 en países de Centroamérica")
<AxesSubplot:title={'center':'Comparación del virus Covid-19 en países de Centroamérica'}, xlabel='Date'>