katiagithub-web

#api-covid-pandas

!pip install pandas
Requirement already satisfied: pandas in c:\users\katia\anaconda3\lib\site-packages (1.4.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\katia\anaconda3\lib\site-packages (from pandas) (2021.3)
Requirement already satisfied: numpy>=1.18.5 in c:\users\katia\anaconda3\lib\site-packages (from pandas) (1.21.5)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\katia\anaconda3\lib\site-packages (from pandas) (2.8.2)
Requirement already satisfied: six>=1.5 in c:\users\katia\anaconda3\lib\site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)
pip install numpy
Requirement already satisfied: numpy in c:\users\katia\anaconda3\lib\site-packages (1.21.5)
Note: you may need to restart the kernel to use updated packages.
import pandas as pd
url = 'https://api.covid19api.com/countries'
url
'https://api.covid19api.com/countries'
df = pd.read_json(url)
df
Country Slug ISO2
0 Gibraltar gibraltar GI
1 Oman oman OM
2 France france FR
3 Jersey jersey JE
4 Mali mali ML
... ... ... ...
243 Puerto Rico puerto-rico PR
244 Papua New Guinea papua-new-guinea PG
245 Saint Pierre and Miquelon saint-pierre-and-miquelon PM
246 Timor-Leste timor-leste TL
247 Montenegro montenegro ME

248 rows × 3 columns

df[df['Country'] == 'Spain']
Country Slug ISO2
141 Spain spain ES
url_rt_es = 'https://api.covid19api.com/country/spain/status/confirmed/live'
df_rt_es = pd.read_json(url_rt_es)
df_rt_es
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Spain ES 40.46 -3.75 0 confirmed 2020-01-22 00:00:00+00:00
1 Spain ES 40.46 -3.75 0 confirmed 2020-01-23 00:00:00+00:00
2 Spain ES 40.46 -3.75 0 confirmed 2020-01-24 00:00:00+00:00
3 Spain ES 40.46 -3.75 0 confirmed 2020-01-25 00:00:00+00:00
4 Spain ES 40.46 -3.75 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
893 Spain ES 40.46 -3.75 12818184 confirmed 2022-07-03 00:00:00+00:00
894 Spain ES 40.46 -3.75 12818184 confirmed 2022-07-04 00:00:00+00:00
895 Spain ES 40.46 -3.75 12890002 confirmed 2022-07-05 00:00:00+00:00
896 Spain ES 40.46 -3.75 12890002 confirmed 2022-07-06 00:00:00+00:00
897 Spain ES 40.46 -3.75 12890002 confirmed 2022-07-07 00:00:00+00:00

898 rows × 10 columns

df_rt_es.head()
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Spain ES 40.46 -3.75 0 confirmed 2020-01-22 00:00:00+00:00
1 Spain ES 40.46 -3.75 0 confirmed 2020-01-23 00:00:00+00:00
2 Spain ES 40.46 -3.75 0 confirmed 2020-01-24 00:00:00+00:00
3 Spain ES 40.46 -3.75 0 confirmed 2020-01-25 00:00:00+00:00
4 Spain ES 40.46 -3.75 0 confirmed 2020-01-26 00:00:00+00:00
df_rt_es.tail()
Country CountryCode Province City CityCode Lat Lon Cases Status Date
893 Spain ES 40.46 -3.75 12818184 confirmed 2022-07-03 00:00:00+00:00
894 Spain ES 40.46 -3.75 12818184 confirmed 2022-07-04 00:00:00+00:00
895 Spain ES 40.46 -3.75 12890002 confirmed 2022-07-05 00:00:00+00:00
896 Spain ES 40.46 -3.75 12890002 confirmed 2022-07-06 00:00:00+00:00
897 Spain ES 40.46 -3.75 12890002 confirmed 2022-07-07 00:00:00+00:00
df_rt_es.set_index('Date')['Cases'].plot(title="Casos de Covid19 en España desde 20/1/202 hasta 29/6/22")
<AxesSubplot:title={'center':'Casos de Covid19 en España desde 20/1/202 hasta 29/6/22'}, xlabel='Date'>

png

df[df['Country'] == 'Panama']
Country Slug ISO2
190 Panama panama PA
url_rt_pa ='https://api.covid19api.com/country/panama/status/confirmed/live'
df_rt_pa = pd.read_json(url_rt_pa)
df_rt_pa
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Panama PA 8.54 -80.78 0 confirmed 2020-01-22 00:00:00+00:00
1 Panama PA 8.54 -80.78 0 confirmed 2020-01-23 00:00:00+00:00
2 Panama PA 8.54 -80.78 0 confirmed 2020-01-24 00:00:00+00:00
3 Panama PA 8.54 -80.78 0 confirmed 2020-01-25 00:00:00+00:00
4 Panama PA 8.54 -80.78 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 Panama PA 8.54 -80.78 925254 confirmed 2022-07-04 00:00:00+00:00
895 Panama PA 8.54 -80.78 925254 confirmed 2022-07-05 00:00:00+00:00
896 Panama PA 8.54 -80.78 925254 confirmed 2022-07-06 00:00:00+00:00
897 Panama PA 8.54 -80.78 925254 confirmed 2022-07-07 00:00:00+00:00
898 Panama PA 8.54 -80.78 925254 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

df_rt_pa.head()
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Panama PA 8.54 -80.78 0 confirmed 2020-01-22 00:00:00+00:00
1 Panama PA 8.54 -80.78 0 confirmed 2020-01-23 00:00:00+00:00
2 Panama PA 8.54 -80.78 0 confirmed 2020-01-24 00:00:00+00:00
3 Panama PA 8.54 -80.78 0 confirmed 2020-01-25 00:00:00+00:00
4 Panama PA 8.54 -80.78 0 confirmed 2020-01-26 00:00:00+00:00
df_rt_pa.tail()
Country CountryCode Province City CityCode Lat Lon Cases Status Date
894 Panama PA 8.54 -80.78 925254 confirmed 2022-07-04 00:00:00+00:00
895 Panama PA 8.54 -80.78 925254 confirmed 2022-07-05 00:00:00+00:00
896 Panama PA 8.54 -80.78 925254 confirmed 2022-07-06 00:00:00+00:00
897 Panama PA 8.54 -80.78 925254 confirmed 2022-07-07 00:00:00+00:00
898 Panama PA 8.54 -80.78 925254 confirmed 2022-07-09 00:00:00+00:00
df_rt_pa.set_index('Date')['Cases'].plot(title="Casos de Covid19 en Panama desde 20/1/202 hasta 29/6/22")
<AxesSubplot:title={'center':'Casos de Covid19 en Panama desde 20/1/202 hasta 29/6/22'}, xlabel='Date'>

png

df[df['Country'] == 'Peru']
Country Slug ISO2
49 Peru peru PE
url_rt_pe ='https://api.covid19api.com/country/peru/status/confirmed/live'
df_rt_pe = pd.read_json(url_rt_pe)
df_rt_pe
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Peru PE -9.19 -75.02 0 confirmed 2020-01-22 00:00:00+00:00
1 Peru PE -9.19 -75.02 0 confirmed 2020-01-23 00:00:00+00:00
2 Peru PE -9.19 -75.02 0 confirmed 2020-01-24 00:00:00+00:00
3 Peru PE -9.19 -75.02 0 confirmed 2020-01-25 00:00:00+00:00
4 Peru PE -9.19 -75.02 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
893 Peru PE -9.19 -75.02 3637529 confirmed 2022-07-03 00:00:00+00:00
894 Peru PE -9.19 -75.02 3640061 confirmed 2022-07-04 00:00:00+00:00
895 Peru PE -9.19 -75.02 3644199 confirmed 2022-07-05 00:00:00+00:00
896 Peru PE -9.19 -75.02 3650203 confirmed 2022-07-06 00:00:00+00:00
897 Peru PE -9.19 -75.02 3656309 confirmed 2022-07-07 00:00:00+00:00

898 rows × 10 columns

df_rt_pe.head()
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Peru PE -9.19 -75.02 0 confirmed 2020-01-22 00:00:00+00:00
1 Peru PE -9.19 -75.02 0 confirmed 2020-01-23 00:00:00+00:00
2 Peru PE -9.19 -75.02 0 confirmed 2020-01-24 00:00:00+00:00
3 Peru PE -9.19 -75.02 0 confirmed 2020-01-25 00:00:00+00:00
4 Peru PE -9.19 -75.02 0 confirmed 2020-01-26 00:00:00+00:00
df_rt_pe.tail()
Country CountryCode Province City CityCode Lat Lon Cases Status Date
893 Peru PE -9.19 -75.02 3637529 confirmed 2022-07-03 00:00:00+00:00
894 Peru PE -9.19 -75.02 3640061 confirmed 2022-07-04 00:00:00+00:00
895 Peru PE -9.19 -75.02 3644199 confirmed 2022-07-05 00:00:00+00:00
896 Peru PE -9.19 -75.02 3650203 confirmed 2022-07-06 00:00:00+00:00
897 Peru PE -9.19 -75.02 3656309 confirmed 2022-07-07 00:00:00+00:00
df_rt_pe.set_index('Date')['Cases'].plot(title="Casos de Covid19 en Peru desde 20/1/202 hasta 29/6/22")
<AxesSubplot:title={'center':'Casos de Covid19 en Peru desde 20/1/202 hasta 29/6/22'}, xlabel='Date'>

png

casos_pa = df_rt_pa.set_index('Date')['Cases']
casos_pa.plot(title="Casos de Covid 19 en Panamá")
<AxesSubplot:title={'center':'Casos de Covid 19 en Panamá'}, xlabel='Date'>

png

pa_vs_es = pd.concat([casos_es,casos_pa],axis=1)
pa_vs_es
Cases Cases
Date
2020-01-22 00:00:00+00:00 0.0 0
2020-01-23 00:00:00+00:00 0.0 0
2020-01-24 00:00:00+00:00 0.0 0
2020-01-25 00:00:00+00:00 0.0 0
2020-01-26 00:00:00+00:00 0.0 0
... ... ...
2022-07-04 00:00:00+00:00 12818184.0 925254
2022-07-05 00:00:00+00:00 12890002.0 925254
2022-07-06 00:00:00+00:00 12890002.0 925254
2022-07-07 00:00:00+00:00 12890002.0 925254
2022-07-09 00:00:00+00:00 NaN 925254

899 rows × 2 columns

pa_vs_es.columns = ['España', 'Panamá']
pa_vs_es
España Panamá
Date
2020-01-22 00:00:00+00:00 0.0 0
2020-01-23 00:00:00+00:00 0.0 0
2020-01-24 00:00:00+00:00 0.0 0
2020-01-25 00:00:00+00:00 0.0 0
2020-01-26 00:00:00+00:00 0.0 0
... ... ...
2022-07-04 00:00:00+00:00 12818184.0 925254
2022-07-05 00:00:00+00:00 12890002.0 925254
2022-07-06 00:00:00+00:00 12890002.0 925254
2022-07-07 00:00:00+00:00 12890002.0 925254
2022-07-09 00:00:00+00:00 NaN 925254

899 rows × 2 columns

pa_vs_es.plot(title="Comparativa Covid19 España-Panamá")
<AxesSubplot:title={'center':'Comparativa Covid19 España-Panamá'}, xlabel='Date'>

png

df[df['Country'] == 'Costa Rica']
Country Slug ISO2
242 Costa Rica costa-rica CR
url_casos_cr = 'https://api.covid19api.com/country/costa-rica/status/confirmed/live'
df_rt_cr = pd.read_json(url_casos_cr)
df_rt_cr
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-22 00:00:00+00:00
1 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-23 00:00:00+00:00
2 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-24 00:00:00+00:00
3 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-25 00:00:00+00:00
4 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-04 00:00:00+00:00
895 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-05 00:00:00+00:00
896 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-06 00:00:00+00:00
897 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-07 00:00:00+00:00
898 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

url_casos_cr = 'https://api.covid19api.com/country/costa-rica/status/confirmed/live'
df_rt_cr = pd.read_json(url_casos_cr)
casos_cr = df_rt_cr.set_index('Date')['Cases']
casos_cr.plot(title="Casos de Covid19 en Costa Rica")
<AxesSubplot:title={'center':'Casos de Covid19 en Costa Rica'}, xlabel='Date'>

png

df[df['Country'] == 'El Salvador']
Country Slug ISO2
139 El Salvador el-salvador SV
url_casos_sv = 'https://api.covid19api.com/country/el-salvador/status/confirmed/live'
df_rt_sv = pd.read_json(url_casos_sv)
df_rt_sv

Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 El Salvador SV 13.79 -88.9 0 confirmed 2020-01-22 00:00:00+00:00
1 El Salvador SV 13.79 -88.9 0 confirmed 2020-01-23 00:00:00+00:00
2 El Salvador SV 13.79 -88.9 0 confirmed 2020-01-24 00:00:00+00:00
3 El Salvador SV 13.79 -88.9 0 confirmed 2020-01-25 00:00:00+00:00
4 El Salvador SV 13.79 -88.9 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 El Salvador SV 13.79 -88.9 169646 confirmed 2022-07-04 00:00:00+00:00
895 El Salvador SV 13.79 -88.9 169646 confirmed 2022-07-05 00:00:00+00:00
896 El Salvador SV 13.79 -88.9 169646 confirmed 2022-07-06 00:00:00+00:00
897 El Salvador SV 13.79 -88.9 169646 confirmed 2022-07-07 00:00:00+00:00
898 El Salvador SV 13.79 -88.9 169646 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

casos_sv = df_rt_sv.set_index('Date')['Cases']
casos_sv.plot(title="Casos de Covid-19 en El Salvador")
<AxesSubplot:title={'center':'Casos de Covid-19 en El Salvador'}, xlabel='Date'>

png

df[df['Country'] == 'Nicaragua']
Country Slug ISO2
36 Nicaragua nicaragua NI
url_casos_ni = 'https://api.covid19api.com/country/nicaragua/status/confirmed/live'
df_rt_ni = pd.read_json(url_casos_ni)
df_rt_ni
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Nicaragua NI 12.87 -85.21 0 confirmed 2020-01-22 00:00:00+00:00
1 Nicaragua NI 12.87 -85.21 0 confirmed 2020-01-23 00:00:00+00:00
2 Nicaragua NI 12.87 -85.21 0 confirmed 2020-01-24 00:00:00+00:00
3 Nicaragua NI 12.87 -85.21 0 confirmed 2020-01-25 00:00:00+00:00
4 Nicaragua NI 12.87 -85.21 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 Nicaragua NI 12.87 -85.21 14690 confirmed 2022-07-04 00:00:00+00:00
895 Nicaragua NI 12.87 -85.21 14690 confirmed 2022-07-05 00:00:00+00:00
896 Nicaragua NI 12.87 -85.21 14721 confirmed 2022-07-06 00:00:00+00:00
897 Nicaragua NI 12.87 -85.21 14721 confirmed 2022-07-07 00:00:00+00:00
898 Nicaragua NI 12.87 -85.21 14721 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

url_casos_ni = 'https://api.covid19api.com/country/nicaragua/status/confirmed/live'
df_rt_ni = pd.read_json(url_casos_ni)
casos_ni = df_rt_ni.set_index('Date')['Cases']
casos_ni.plot(title="Casos de Covid19 en Nicaragua")
<AxesSubplot:title={'center':'Casos de Covid19 en Nicaragua'}, xlabel='Date'>

png

df[df['Country'] == 'Honduras']
Country Slug ISO2
91 Honduras honduras HN
url_casos_hn = 'https://api.covid19api.com/country/honduras/status/confirmed/live'
df_rt_hn = pd.read_json(url_casos_hn)
df_rt_hn
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Honduras HN 15.2 -86.24 0 confirmed 2020-01-22 00:00:00+00:00
1 Honduras HN 15.2 -86.24 0 confirmed 2020-01-23 00:00:00+00:00
2 Honduras HN 15.2 -86.24 0 confirmed 2020-01-24 00:00:00+00:00
3 Honduras HN 15.2 -86.24 0 confirmed 2020-01-25 00:00:00+00:00
4 Honduras HN 15.2 -86.24 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 Honduras HN 15.2 -86.24 427718 confirmed 2022-07-04 00:00:00+00:00
895 Honduras HN 15.2 -86.24 427718 confirmed 2022-07-05 00:00:00+00:00
896 Honduras HN 15.2 -86.24 427718 confirmed 2022-07-06 00:00:00+00:00
897 Honduras HN 15.2 -86.24 427718 confirmed 2022-07-07 00:00:00+00:00
898 Honduras HN 15.2 -86.24 429408 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

url_casos_hn = 'https://api.covid19api.com/country/honduras/status/confirmed/live'
df_rt_hn = pd.read_json(url_casos_hn)
casos_hn = df_rt_hn.set_index('Date')['Cases']
casos_hn.plot(title="Casos de Covid19 en Honduras")
<AxesSubplot:title={'center':'Casos de Covid19 en Honduras'}, xlabel='Date'>

png

df[df['Country'] == 'Guatemala']
Country Slug ISO2
239 Guatemala guatemala GT
url_casos_gt = 'https://api.covid19api.com/country/guatemala/status/confirmed/live'
df_rt_gt = pd.read_json(url_casos_gt)
df_rt_gt
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Guatemala GT 15.78 -90.23 0 confirmed 2020-01-22 00:00:00+00:00
1 Guatemala GT 15.78 -90.23 0 confirmed 2020-01-23 00:00:00+00:00
2 Guatemala GT 15.78 -90.23 0 confirmed 2020-01-24 00:00:00+00:00
3 Guatemala GT 15.78 -90.23 0 confirmed 2020-01-25 00:00:00+00:00
4 Guatemala GT 15.78 -90.23 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 Guatemala GT 15.78 -90.23 921146 confirmed 2022-07-04 00:00:00+00:00
895 Guatemala GT 15.78 -90.23 922340 confirmed 2022-07-05 00:00:00+00:00
896 Guatemala GT 15.78 -90.23 927473 confirmed 2022-07-06 00:00:00+00:00
897 Guatemala GT 15.78 -90.23 933259 confirmed 2022-07-07 00:00:00+00:00
898 Guatemala GT 15.78 -90.23 939300 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

url_casos_gt = 'https://api.covid19api.com/country/guatemala/status/confirmed/live'
df_rt_gt = pd.read_json(url_casos_gt)
casos_gt = df_rt_gt.set_index('Date')['Cases']
casos_gt.plot(title="Casos de Covid19 en Guatemala")
<AxesSubplot:title={'center':'Casos de Covid19 en Guatemala'}, xlabel='Date'>

png

df[df['Country'] == 'Costa Rica']
Country Slug ISO2
242 Costa Rica costa-rica CR
url_casos_cr = 'https://api.covid19api.com/country/costa-rica/status/confirmed/live'
df_rt_cr = pd.read_json(url_casos_cr)
df_rt_cr
Country CountryCode Province City CityCode Lat Lon Cases Status Date
0 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-22 00:00:00+00:00
1 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-23 00:00:00+00:00
2 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-24 00:00:00+00:00
3 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-25 00:00:00+00:00
4 Costa Rica CR 9.75 -83.75 0 confirmed 2020-01-26 00:00:00+00:00
... ... ... ... ... ... ... ... ... ... ...
894 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-04 00:00:00+00:00
895 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-05 00:00:00+00:00
896 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-06 00:00:00+00:00
897 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-07 00:00:00+00:00
898 Costa Rica CR 9.75 -83.75 904934 confirmed 2022-07-09 00:00:00+00:00

899 rows × 10 columns

url_casos_cr = 'https://api.covid19api.com/country/costa-rica/status/confirmed/live'
df_rt_cr = pd.read_json(url_casos_cr)
casos_cr = df_rt_cr.set_index('Date')['Cases']
casos_cr.plot(title="Casos de Covid19 en Costa Rica")
<AxesSubplot:title={'center':'Casos de Covid19 en Costa Rica'}, xlabel='Date'>

png

pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn = pd.concat([casos_pa,casos_sv,casos_ni,casos_cr,casos_gt,casos_hn],axis=1)
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn
Cases Cases Cases Cases Cases Cases
Date
2020-01-22 00:00:00+00:00 0 0 0 0 0 0
2020-01-23 00:00:00+00:00 0 0 0 0 0 0
2020-01-24 00:00:00+00:00 0 0 0 0 0 0
2020-01-25 00:00:00+00:00 0 0 0 0 0 0
2020-01-26 00:00:00+00:00 0 0 0 0 0 0
... ... ... ... ... ... ...
2022-07-04 00:00:00+00:00 925254 169646 14690 904934 921146 427718
2022-07-05 00:00:00+00:00 925254 169646 14690 904934 922340 427718
2022-07-06 00:00:00+00:00 925254 169646 14721 904934 927473 427718
2022-07-07 00:00:00+00:00 925254 169646 14721 904934 933259 427718
2022-07-09 00:00:00+00:00 925254 169646 14721 904934 939300 429408

899 rows × 6 columns

pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn.columns = ['Panamá', 'El Savador', 'Nicaragua', 'Costa Rica', 'Guatemala', 'Honduras']
pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn
Panamá El Savador Nicaragua Costa Rica Guatemala Honduras
Date
2020-01-22 00:00:00+00:00 0 0 0 0 0 0
2020-01-23 00:00:00+00:00 0 0 0 0 0 0
2020-01-24 00:00:00+00:00 0 0 0 0 0 0
2020-01-25 00:00:00+00:00 0 0 0 0 0 0
2020-01-26 00:00:00+00:00 0 0 0 0 0 0
... ... ... ... ... ... ...
2022-07-04 00:00:00+00:00 925254 169646 14690 904934 921146 427718
2022-07-05 00:00:00+00:00 925254 169646 14690 904934 922340 427718
2022-07-06 00:00:00+00:00 925254 169646 14721 904934 927473 427718
2022-07-07 00:00:00+00:00 925254 169646 14721 904934 933259 427718
2022-07-09 00:00:00+00:00 925254 169646 14721 904934 939300 429408

899 rows × 6 columns

pa_vs_sv_vs_ni_vs_cr_vs_gt_vs_hn.plot(title="Comparación del virus Covid-19 en países de Centroamérica")

<AxesSubplot:title={'center':'Comparación del virus Covid-19 en países de Centroamérica'}, xlabel='Date'>

png